Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.306
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731966

RESUMO

Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.


Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Células K562 , Apoptose , Secretoma/metabolismo , Pessoa de Meia-Idade , Feminino , Masculino , Células da Medula Óssea/metabolismo , Linhagem da Célula/genética , Sobrevivência Celular , Adulto
2.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653778

RESUMO

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição SOXC , Tretinoína , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Linhagem da Célula/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
3.
Genome Med ; 16(1): 60, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658971

RESUMO

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) are common gland neoplasms demonstrating distinctive transcription factors. Although the role of immune cells in PitNETs has been widely recognized, the precise immunological environment and its control over tumor cells are poorly understood. METHODS: The heterogeneity, spatial distribution, and clinical significance of macrophages in PitNETs were analyzed using single-cell RNA sequencing (scRNA-seq), bulk RNA-seq, spatial transcriptomics, immunohistochemistry, and multiplexed quantitative immunofluorescence (QIF). Cell viability, cell apoptosis assays, and in vivo subcutaneous xenograft experiments have confirmed that INHBA-ACVR1B influences the process of tumor cell apoptosis. RESULTS: The present study evaluated scRNA-seq data from 23 PitNET samples categorized into 3 primary lineages. The objective was to explore the diversity of tumors and the composition of immune cells across these lineages. Analyzed data from scRNA-seq and 365 bulk RNA sequencing samples conducted in-house revealed the presence of three unique subtypes of tumor immune microenvironment (TIME) in PitNETs. These subtypes were characterized by varying levels of immune infiltration, ranging from low to intermediate to high. In addition, the NR5A1 lineage is primarily associated with the subtype characterized by limited infiltration of immune cells. Tumor-associated macrophages (TAMs) expressing CX3CR1+, C1Q+, and GPNMB+ showed enhanced contact with tumor cells expressing NR5A1 + , TBX19+, and POU1F1+, respectively. This emphasizes the distinct interaction axes between TAMs and tumor cells based on their lineage. Moreover, the connection between CX3CR1+ macrophages and tumor cells via INHBA-ACVR1B regulates tumor cell apoptosis. CONCLUSIONS: In summary, the different subtypes of TIME and the interaction between TAM and tumor cells offer valuable insights into the control of TIME that affects the development of PitNET. These findings can be utilized as prospective targets for therapeutic interventions.


Assuntos
Macrófagos , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/metabolismo , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/imunologia , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Fenótipo , Apoptose/genética , Linhagem da Célula/genética
4.
Oncogene ; 43(20): 1489-1505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519642

RESUMO

Cell plasticity sustains intra-tumor heterogeneity and treatment resistance in melanoma. Deciphering the transcriptional mechanisms governing reversible phenotypic transitions between proliferative/differentiated and invasive/stem-like states is required. Expression of the ZEB1 transcription factor is frequently activated in melanoma, where it fosters adaptive resistance to targeted therapies. Here, we performed a genome-wide characterization of ZEB1 transcriptional targets, by combining ChIP-sequencing and RNA-sequencing, upon phenotype switching in melanoma models. We identified and validated ZEB1 binding peaks in the promoter of key lineage-specific genes crucial for melanoma cell identity. Mechanistically, ZEB1 negatively regulates SOX10-MITF dependent proliferative/melanocytic programs and positively regulates AP-1 driven invasive and stem-like programs. Comparative analyses with breast carcinoma cells revealed lineage-specific ZEB1 binding, leading to the design of a more reliable melanoma-specific ZEB1 regulon. We then developed single-cell spatial multiplexed analyses to characterize melanoma cell states intra-tumoral heterogeneity in human melanoma samples. Combined with scRNA-Seq analyses, our findings confirmed increased ZEB1 expression in Neural-Crest-like cells and mesenchymal cells, underscoring its significance in vivo in both populations. Overall, our results define ZEB1 as a major transcriptional regulator of cell states transitions and provide a better understanding of lineage-specific transcriptional programs sustaining intra-tumor heterogeneity in melanoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Humanos , Linhagem Celular Tumoral , Linhagem da Célula/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Camundongos , Animais , Proliferação de Células/genética , Transcrição Gênica/genética
5.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499786

RESUMO

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Assuntos
Apoferritinas , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Apoferritinas/genética , Apoferritinas/metabolismo , Linhagem da Célula/genética , Citosina/metabolismo , Fatores de Transcrição Forkhead , Ferro/metabolismo
6.
Nat Commun ; 15(1): 2744, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553478

RESUMO

Assigning single cell transcriptomes to cellular lineage trees by lineage tracing has transformed our understanding of differentiation during development, regeneration, and disease. However, lineage tracing is technically demanding, often restricted in time-resolution, and most scRNA-seq datasets are devoid of lineage information. Here we introduce Gene Expression Memory-based Lineage Inference (GEMLI), a computational tool allowing to robustly identify small to medium-sized cell lineages solely from scRNA-seq datasets. GEMLI allows to study heritable gene expression, to discriminate symmetric and asymmetric cell fate decisions and to reconstruct individual multicellular structures from pooled scRNA-seq datasets. In human breast cancer biopsies, GEMLI reveals previously unknown gene expression changes at the onset of cancer invasiveness. The universal applicability of GEMLI allows studying the role of small cell lineages in a wide range of physiological and pathological contexts, notably in vivo. GEMLI is available as an R package on GitHub ( https://github.com/UPSUTER/GEMLI ).


Assuntos
Perfilação da Expressão Gênica , Software , Humanos , Linhagem da Célula/genética , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Análise de Célula Única
7.
Oncogene ; 43(19): 1411-1430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480916

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neurofibromatose 1 , Inibidores de Proteínas Quinases , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/tratamento farmacológico , Linhagem Celular Tumoral , Transdução de Sinais , Linhagem da Célula/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Neurofibrossarcoma/tratamento farmacológico , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética
8.
Nucleic Acids Res ; 52(8): 4234-4256, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348998

RESUMO

Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters-including that of Csf1r-are composed exclusively of 'distal' elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Macrófagos , Regiões Promotoras Genéticas , Fatores de Transcrição , Macrófagos/metabolismo , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem da Célula/genética
9.
Nature ; 627(8002): 196-203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355805

RESUMO

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Assuntos
Movimento Celular , Forma do Núcleo Celular , Neutrófilos , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Conformação de Ácido Nucleico , Diferenciação Celular/genética , Inflamação/genética , Elementos Facilitadores Genéticos , Linhagem da Célula/genética
10.
STAR Protoc ; 5(1): 102809, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38180835

RESUMO

Here, we present a protocol to perform barcode decay lineage tracing followed by single-cell transcriptome analysis (BdLT-Seq). We describe steps for BdLT-Seq experimental design, building barcoded episome reporters, performing episome transfection, and barcode retrieval. We then describe procedures for sequencing library construction while providing options for sample multiplexing and data analysis. This BdLT-Seq technique enables the assessment of clonal evolution in a directional manner while preserving isogeneity, thus allowing the comparison of non-genetic molecular features between isogenic cell lineages. For complete details on the use and execution of this protocol, please refer to Shlyakhtina et al. (2023).1.


Assuntos
Evolução Clonal , Padrões de Herança , Linhagem da Célula/genética , Clonagem Molecular , Análise de Dados
11.
Cell Rep Med ; 5(2): 101394, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280378

RESUMO

A tumor ecosystem constantly evolves over time in the face of immune predation or therapeutic intervention, resulting in treatment failure and tumor progression. Here, we present a single-cell transcriptome-based strategy to determine the evolution of longitudinal tumor biopsies from liver cancer patients by measuring cellular lineage and ecology. We construct a lineage and ecological score as joint dynamics of tumor cells and their microenvironments. Tumors may be classified into four main states in the lineage-ecological space, which are associated with clinical outcomes. Analysis of longitudinal samples reveals the evolutionary trajectory of tumors in response to treatment. We validate the lineage-ecology-based scoring system in predicting clinical outcomes using bulk transcriptomic data of additional cohorts of 716 liver cancer patients. Our study provides a framework for monitoring tumor evolution in response to therapeutic intervention.


Assuntos
Neoplasias Hepáticas , Humanos , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Transcriptoma/genética , Microambiente Tumoral/genética
12.
EBioMedicine ; 100: 104971, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244291

RESUMO

BACKGROUND: Neoadjuvant chemoimmunotherapy has offered novel therapeutic options for patients with locally advanced oesophageal squamous cell carcinoma (ESCC). Depicting the landscape of genomic and immune profiles is critical in predicting therapeutic responses. METHODS: We integrated whole-exome sequencing, single-cell RNA sequencing, and immunofluorescence data of ESCC samples from 24 patients who received neoadjuvant treatment with PD-1 inhibitors plus paclitaxel and platinum-based chemotherapy to identify correlations with therapeutic responses. FINDINGS: An elevation of small insertions and deletions was observed in responders. DNA mismatch repair (MMR) pathway alternations were highly frequent in patients with optimal responses and correlated with tumour infiltrating lymphocytes (TILs). Among the TILs in ESCC, dichotomous developing trajectories of B cells were identified, with one lineage differentiating towards LMO2+ germinal centre B cells and another lineage differentiating towards CD55+ memory B cells. While LMO2+ germinal centre B cells were enriched in responding tumours, CD55+ memory B cells were found to correlate with inferior responses to combination therapy, exhibiting immune-regulating features and impeding the cytotoxicity of CD8+ T cells. The comprehensive evaluation of transcriptomic B cell lineage features was validated to predict responses to immunotherapy in patients with cancer. INTERPRETATION: This comprehensive evaluation of tumour MMR pathway alternations and intra-tumoural B cell features will help to improve the selection and management of patients with ESCC to receive neoadjuvant chemoimmunotherapy. FUNDING: National Science Foundation of China (82373371, 82330053), Eastern Scholar Program at Shanghai Institutions of Higher Learning, National Science and Technology Major Project of China (2023YFA1800204, 2020YFC2008402), and Science and Technology Commission of Shanghai Municipality (22ZR1410700, 20ZR1410800).


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Terapia Neoadjuvante , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Linfócitos T CD8-Positivos , Linhagem da Célula/genética , China , Genômica
13.
Proc Natl Acad Sci U S A ; 121(4): e2317929121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227649

RESUMO

The hierarchical model of hematopoiesis posits that self-renewing, multipotent hematopoietic stem cells (HSCs) give rise to all blood cell lineages. While this model accounts for hematopoiesis in transplant settings, its applicability to steady-state hematopoiesis remains to be clarified. Here, we used inducible clonal DNA barcoding of endogenous adult HSCs to trace their contribution to major hematopoietic cell lineages in unmanipulated animals. While the majority of barcodes were unique to a single lineage, we also observed frequent barcode sharing between multiple lineages, specifically between lymphocytes and myeloid cells. These results suggest that both single-lineage and multilineage contributions by HSCs collectively drive continuous hematopoiesis, and highlight a close relationship of myeloid and lymphoid development.


Assuntos
Células-Tronco Adultas , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular , Hematopoese/genética , Linhagem da Célula/genética
14.
J Genet Genomics ; 51(1): 3-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37734711

RESUMO

The hematopoietic system composed of hematopoietic stem and progenitor cells (HSPCs) and their differentiated lineages serves as an ideal model to uncover generic principles of cell fate transitions. From gastrulation onwards, there successively emerge primitive hematopoiesis (that produces specialized hematopoietic cells), pro-definitive hematopoiesis (that produces lineage-restricted progenitor cells), and definitive hematopoiesis (that produces multipotent HSPCs). These nascent lineages develop in several transient hematopoietic sites and finally colonize into lifelong hematopoietic sites. The development and maintenance of hematopoietic lineages are orchestrated by cell-intrinsic gene regulatory networks and cell-extrinsic microenvironmental cues. Owing to the progressive methodology (e.g., high-throughput lineage tracing and single-cell functional and omics analyses), our understanding of the developmental origin of hematopoietic lineages and functional properties of certain hematopoietic organs has been updated; meanwhile, new paradigms to characterize rare cell types, cell heterogeneity and its causes, and comprehensive regulatory landscapes have been provided. Here, we review the evolving views of HSPC biology during developmental and postnatal hematopoiesis. Moreover, we discuss recent advances in the in vitro induction and expansion of HSPCs, with a focus on the implications for clinical applications.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Hematopoese/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Desenvolvimento Embrionário/genética , Embrião de Mamíferos , Linhagem da Célula/genética
16.
Sci China Life Sci ; 67(2): 320-331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870675

RESUMO

The embryonic mesoderm comprises heterogeneous cell subpopulations with distinct lineage biases. It is unclear whether a bias for the human hematopoietic lineage emerges at this early developmental stage. In this study, we integrated single-cell transcriptomic analyses of human mesoderm cells from embryonic stem cells and embryos, enabling us to identify and define the molecular features of human hematopoietic mesoderm (HM) cells biased towards hematopoietic lineages. We discovered that BMP4 plays an essential role in HM specification and can serve as a marker for HM cells. Mechanistically, BMP4 acts as a downstream target of HDAC1, which modulates the expression of BMP4 by deacetylating its enhancer. Inhibition of HDAC significantly enhances HM specification and promotes subsequent hematopoietic cell differentiation. In conclusion, our study identifies human HM cells and describes new mechanisms for human hematopoietic development.


Assuntos
Células-Tronco Embrionárias , Mesoderma , Humanos , Diferenciação Celular/genética , Mesoderma/metabolismo , Linhagem da Célula/genética
17.
Blood ; 143(3): 243-257, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37922454

RESUMO

ABSTRACT: Regulation of lineage biases in hematopoietic stem and progenitor cells (HSPCs) is pivotal for balanced hematopoietic output. However, little is known about the mechanism behind lineage choice in HSPCs. Here, we show that messenger RNA (mRNA) decay factors regnase-1 (Reg1; Zc3h12a) and regnase-3 (Reg3; Zc3h12c) are essential for determining lymphoid fate and restricting myeloid differentiation in HSPCs. Loss of Reg1 and Reg3 resulted in severe impairment of lymphopoiesis and a mild increase in myelopoiesis in the bone marrow. Single-cell RNA sequencing analysis revealed that Reg1 and Reg3 regulate lineage directions in HSPCs via the control of a set of myeloid-related genes. Reg1- and Reg3-mediated control of mRNA encoding Nfkbiz, a transcriptional and epigenetic regulator, was essential for balancing lymphoid/myeloid lineage output in HSPCs in vivo. Furthermore, single-cell assay for transposase-accessible chromatin sequencing analysis revealed that Reg1 and Reg3 control the epigenetic landscape on myeloid-related gene loci in early stage HSPCs via Nfkbiz. Consistently, an antisense oligonucleotide designed to inhibit Reg1- and Reg3-mediated Nfkbiz mRNA degradation primed hematopoietic stem cells toward myeloid lineages by enhancing Nfkbiz expression. Collectively, the collaboration between posttranscriptional control and chromatin remodeling by the Reg1/Reg3-Nfkbiz axis governs HSPC lineage biases, ultimately dictating the fate of lymphoid vs myeloid differentiation.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Hematopoese/genética , RNA Mensageiro/metabolismo , Diferenciação Celular/genética
18.
Front Immunol ; 14: 1263633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149248

RESUMO

Introduction: Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method: In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result: Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion: Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem da Célula/genética , Análise da Expressão Gênica de Célula Única , Leucócitos Mononucleares/patologia , Necroptose/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral/genética
19.
Nat Commun ; 14(1): 8459, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123534

RESUMO

Single-cell technologies enable the dynamic analyses of cell fate mapping. However, capturing the gene regulatory relationships and identifying the driver factors that control cell fate decisions are still challenging. We present CEFCON, a network-based framework that first uses a graph neural network with attention mechanism to infer a cell-lineage-specific gene regulatory network (GRN) from single-cell RNA-sequencing data, and then models cell fate dynamics through network control theory to identify driver regulators and the associated gene modules, revealing their critical biological processes related to cell states. Extensive benchmarking tests consistently demonstrated the superiority of CEFCON in GRN construction, driver regulator identification, and gene module identification over baseline methods. When applied to the mouse hematopoietic stem cell differentiation data, CEFCON successfully identified driver regulators for three developmental lineages, which offered useful insights into their differentiation from a network control perspective. Overall, CEFCON provides a valuable tool for studying the underlying mechanisms of cell fate decisions from single-cell RNA-seq data.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Animais , Camundongos , Diferenciação Celular/genética , Linhagem da Célula/genética , Redes Reguladoras de Genes , Análise de Célula Única/métodos
20.
Cell Syst ; 14(12): 1113-1121.e9, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128483

RESUMO

CRISPR-Cas9-based genome editing combined with single-cell sequencing enables the tracing of the history of cell divisions, or cellular lineage, in tissues and whole organisms. Although standard phylogenetic approaches may be applied to reconstruct cellular lineage trees from this data, the unique features of the CRISPR-Cas9 editing process motivate the development of specialized models that describe the evolution of CRISPR-Cas9-induced mutations. Here, we introduce the "star homoplasy" evolutionary model that constrains a phylogenetic character to mutate at most once along a lineage, capturing the "non-modifiability" property of CRISPR-Cas9 mutations. We derive a combinatorial characterization of star homoplasy phylogenies and use this characterization to develop an algorithm, "Startle", that computes a maximum parsimony star homoplasy phylogeny. We demonstrate that Startle infers more accurate phylogenies on simulated lineage tracing data compared with existing methods and finds parsimonious phylogenies with fewer metastatic migrations on lineage tracing data from mouse metastatic lung adenocarcinoma.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Filogenia , Edição de Genes/métodos , Linhagem da Célula/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA